jueves, 2 de junio de 2011

Ambiguous Permutations

 Some programming contest problems are really tricky: not only do they require a different output format from what you might have expected, but also the sample output does not show the difference. For an example, let us look at permutations.
A permutation of the integers 1 to n is an ordering of these integers. So the natural way to represent a permutation is to list the integers in this order. With n = 5, a permutation might look like 2, 3, 4, 5, 1.
However, there is another possibility of representing a permutation: You create a list of numbers where the i-th number is the position of the integer i in the permutation. Let us call this second possibility an inverse permutation. The inverse permutation for the sequence above is 5, 1, 2, 3, 4.
An ambiguous permutation is a permutation which cannot be distinguished from its inverse permutation. The permutation 1, 4, 3, 2 for example is ambiguous, because its inverse permutation is the same. To get rid of such annoying sample test cases, you have to write a program which detects if a given permutation is ambiguous or not.
Input Specification

The input contains several test cases.
The first line of each test case contains an integer n (1 ≤ n ≤ 100000). Then a permutation of the integers 1 to n follows in the next line. There is exactly one space character between consecutive integers. You can assume that every integer between 1 and n appears exactly once in the permutation.
The last test case is followed by a zero.
Output Specification

For each test case output whether the permutation is ambiguous or not. Adhere to the format shown in the sample output. 


Sample Input
4
1 4 3 2
5
2 3 4 5 1
1
1
0
Sample Output
ambiguous
not ambiguous
ambiguous



https://www.spoj.pl/problems/PERMUT2/



public class AmbiguousPermutations 
{
   public static void main( String args[] ) throws Exception
   {  
      int[] numeros = new int[ 100001 ];
      boolean ambiguo;
      int tamanio = sig1();
  
      while( tamanio != 0 )
      {   
         //Leemos cada numero de la permutacion
         for( int i = 1; i < tamanio; i ++ )
            numeros[ i ] = sig2();
   
         numeros[ tamanio ] = sig1();
      
         // Asumimos que la permutacion es ambigua
         ambiguo = true;
   
         /*
         * Para que una permutacion sea ambigua debe darse que para todo a y b:
         * numeros[ a ] = b   <->  numeros[ b ] = a
         * 
         * Como b = numeros[ a ], reemplazando en el lado derecho:
         * numeros[ numeros[ a ] ] = a 
         */
         for( int i = 1; i <= tamanio; i ++ )
         {
            if( numeros[ numeros[ i ] ] != i )
            {
               ambiguo = false;
               break;
            }
         }
   
         if( ambiguo )
            System.out.println( "ambiguous" );
         else
            System.out.println( "not ambiguous" );
   
         tamanio = sig1();
      }
   }
 
   public static int sig1() throws Exception
   {
      int car, num = System.in.read() - 48;
      
      car = System.in.read();
  
      while( car != 10 )
      {
         num = 10 * num + ( car - 48 );
         car = System.in.read();
      }
   
      return num;
   }
 
   public static int sig2() throws Exception
   {
         int car, num = System.in.read() - 48;
  
         car = System.in.read();
  
         while( car != 32 )
         {
            num = 10 * num + ( car - 48 );
            car = System.in.read();
         }
  
      return num;
   }
}

No hay comentarios:

Publicar un comentario