A permutation of the integers 1 to n is an ordering of these integers. So the natural way to represent a permutation is to list the integers in this order. With n = 5, a permutation might look like 2, 3, 4, 5, 1.
However, there is another possibility of representing a permutation: You create a list of numbers where the i-th number is the position of the integer i in the permutation. Let us call this second possibility an inverse permutation. The inverse permutation for the sequence above is 5, 1, 2, 3, 4.
An ambiguous permutation is a permutation which cannot be distinguished from its inverse permutation. The permutation 1, 4, 3, 2 for example is ambiguous, because its inverse permutation is the same. To get rid of such annoying sample test cases, you have to write a program which detects if a given permutation is ambiguous or not.
Input Specification
The input contains several test cases.
The first line of each test case contains an integer n (1 ≤ n ≤ 100000). Then a permutation of the integers 1 to n follows in the next line. There is exactly one space character between consecutive integers. You can assume that every integer between 1 and n appears exactly once in the permutation.
The last test case is followed by a zero.
Output Specification
For each test case output whether the permutation is ambiguous or not. Adhere to the format shown in the sample output.
Sample Input
4
1 4 3 2
5
2 3 4 5 1
1
1
0
Sample Output
ambiguous
not ambiguous
ambiguous
https://www.spoj.pl/problems/PERMUT2/
public class AmbiguousPermutations
{
public static void main( String args[] ) throws Exception
{
int[] numeros = new int[ 100001 ];
boolean ambiguo;
int tamanio = sig1();
while( tamanio != 0 )
{
//Leemos cada numero de la permutacion
for( int i = 1; i < tamanio; i ++ )
numeros[ i ] = sig2();
numeros[ tamanio ] = sig1();
// Asumimos que la permutacion es ambigua
ambiguo = true;
/*
* Para que una permutacion sea ambigua debe darse que para todo a y b:
* numeros[ a ] = b <-> numeros[ b ] = a
*
* Como b = numeros[ a ], reemplazando en el lado derecho:
* numeros[ numeros[ a ] ] = a
*/
for( int i = 1; i <= tamanio; i ++ )
{
if( numeros[ numeros[ i ] ] != i )
{
ambiguo = false;
break;
}
}
if( ambiguo )
System.out.println( "ambiguous" );
else
System.out.println( "not ambiguous" );
tamanio = sig1();
}
}
public static int sig1() throws Exception
{
int car, num = System.in.read() - 48;
car = System.in.read();
while( car != 10 )
{
num = 10 * num + ( car - 48 );
car = System.in.read();
}
return num;
}
public static int sig2() throws Exception
{
int car, num = System.in.read() - 48;
car = System.in.read();
while( car != 32 )
{
num = 10 * num + ( car - 48 );
car = System.in.read();
}
return num;
}
}
No hay comentarios:
Publicar un comentario